SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: DIGITAL IMAGE PROCESSING (20EC0441)

Course & Branch: B.Tech. – ECE Year & Sem: IV-B.Tech.& I-Sem. Regulation: R20

UNIT – I INTRODUCTION TO DIGITAL IMAGE PROCESSING

		INTRODUCTION TO DIGITAL IMAGE PROCESSING		
1	a)	State the purpose of the image processing. List out the fundamental steps in digital image processing which can be applied to images.	[L1][CO1]	[6M]
	b)	Define image processing. Illustrate example fields of its usage.	[L2][CO1]	[6M]
2	a)	Discuss the three principal sensor arrangements used to transform	[L2][CO1]	[6M]
4	a)	illumination energy into digital images.		
	b)	List out the applications of digital image processing.	[L1][CO1]	[6M]
3	a)	Discuss the method of image sensing and acquisition along with suitable diagrams.	[L2][CO1]	[6M]
	b)	Calculate the number of bits required to store a digitized image if image sizes are 8×8, 32×32 for 8-bit pixel depth.	[L3][CO1]	[6M]
4	a)	Explain about image sampling and quantization process with proper steps.	[L2][CO1]	[8M]
	b)	Discuss the method for representation of a digital image.	[L2][CO1]	[4M]
5	a)	Discuss the classification of digital images and image types.	[L2][CO1]	[6M]
	b)	Explain the neighbors of a pixel with suitable example.	[L3][CO1]	[6M]
6	a)	Illustrate about the adjacency, connectivity, regions and boundaries.	[L2][CO1]	[6M]
	b)	Let $V = \{1\}$, Compute the 4-adjacency, 8-adjacency and different paths between two pixels $(1,1)$ and $(3,3)$ for the center pixel in the given image.	[L3][CO1]	[6M]
		$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 1 & 1 \\ 3 & 1 & 9 \end{bmatrix}$		
7	a)	Discuss about the distance measures of a pixel with suitable example.	[L2][CO1]	[6M]
	b)	Demonstrate the Arithmetic operations on digital images with relevant expressions.	[L2][CO1]	[6M]
8	a)	List out the applications of image subtraction and image multiplication.	[L2][CO1]	[6M]
	b)	Explain the Linear versus Nonlinear operations on digital images with relevant equations.	[L2][CO1]	[6M]
9	a)	Compute the array product and matrix product for the following two images and comment the result. $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$	[L3][CO1]	[6M]
	b)	Explain the Array versus Matrix operations on digital images with relevant equations.	[L3][CO1]	[6M]
10	a)	Demonstrate the set operation and logical operations in digital image processing along with suitable example.	[L2][CO1]	[6M]

b)	Compute	the	image	addition,	image	subtraction	and	image	[L3][CO1]	[6M]
				for the foll						
	f(x,y) =	$\begin{bmatrix} 1 \end{bmatrix}$	$\begin{bmatrix} -1 \end{bmatrix}$ an	d g(x, y) =	$=\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	-2]				
	, , , , ,	L—1	1 1	0 (7,7)	L—2	2 1				

UNIT- II IMAGE TRANSFORMS

1	a)	Discuss the need of image transforms.	[L2][CO2]	[6M]
	b)	Define 2D Orthogonal and Unitary transforms.	[L1][CO2]	[6M]
2	a)	Discuss the properties of Unitary transforms.	[L2][CO2]	[6M]
	b)	Define 1D and 2D – Discrete Fourier Transform with equations.	[L1][CO2]	[6M]
3	a)	Prove the Separable property of 2D – Discrete Fourier Transform.	[L3][CO2]	[6M]
	b)	Prove the Periodicity property of 2D – Discrete Fourier Transform.	[L3][CO2]	[6M]
4	a)	Deduce the basis function of $2D - Discrete$ Fourier Transform for $N = 4$.	[L4][CO2]	[6M]
	b)	Compute 2D – Discrete Fourier Transform for the following image.	[L3][CO2]	[6M]
		$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$		
		$f(x,y) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$		
5	a)	Define 2D – Discrete Cosine Transform with equations.	[L1][CO2]	[4M]
	b)	Deduce the Discrete Cosine Transform basis matrix for $N = 4$.	[L4][CO2]	[8M]
6	a)	List the applications of 2D-Discrete Cosine Transforms.	[L1][CO2]	[4M]
	b)	Compute 2D – Discrete Cosine Transform for the following image.	[L3][CO2]	[8M]
		r1 1 1 11		
		$f(x,y) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$		
		$\int (x,y)^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$		
		L1 1 1 1 ^J		
7	a)	Compute the image basis function of Hadamard Transform when $N = 2$.	[L3][CO2]	[6M]
	b)	Evaluate Hadamard transform for the given image	[L3][CO2]	[6M]
		$f(x,y) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
		LO 1J		
8	a)	Deduce the basis matrix of Walsh Transform for $N = 4$.	[L4][CO2]	[6M]
	b)	Calculate Walsh transform for the given image	[L3][CO2]	[6M]
	Í	$f(x,y) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$		
		l1 1		
9	a)	Define Haar transform and give the algorithm and flowchart to	[L1][CO2]	[6M]
	α,	compute Haar basis.		[01,1]
	b)	Compute Haar transform for the given image.	[L3][CO2]	[6M]
	-,	$f(x,y) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	[-][]	[]
		$\int (x,y) = \begin{bmatrix} 1 & 1 \end{bmatrix}$		
1	a)	Compute the Haar basis for N=2.	[L3][CO2]	[8M]
0	b)	Compare different Image Transforms.	[L2][CO2]	[4M]
	9)			L "^ * _]

UNIT- III IMAGE ENHANCEMENT

1	a)	Define image enhancement and point operations in image	[L1][CO3]	[6M]
		enhancement?		
	b)	Illustrate the contrast stretching in image enhancement with suitable	[L2][CO3]	[6M]
		example.		
2	a)	Define negative image transformation and illustrate with suitable	[L1][CO3]	[6M]
		example.		
	b)	Explain the Intensity level slicing operation and bit extraction	[L2][CO3]	[6M]
		operation in image enhancement with suitable example.		
3	a)	Define histogram and draw the histogram four basic image types.	[L1][CO3]	[6M]
	b)	Explain the procedure for histogram process and uses of histogram.	[L2][CO3]	[6M]
4	a)	Discuss the mechanics of spatial filtering with suitable diagram.	[L2][CO3]	[6M]
	b)	Illustrate the smoothing spatial filters along with the required	[L2][CO3]	[6 M]
		expressions.		
5	a)	Illustrate the sharpening spatial filters along with the required	[L2][CO3]	[6 M]
		expressions.		
	b)	Define the image enhancement in frequency domain and give the	[L1][CO3]	[6M]
		expression.		
6	a)	Discuss the smoothing filters in frequency domain along with the	[L2][CO3]	[6M]
		required expressions.		
	b)	Explain the sharpening filters in frequency domain along with the	[L2][CO3]	[6 M]
		required expressions.		
7	a)	Define the following terms: Saturation, Hue and Brightness.	[L1][CO3]	[6M]
	b)	Draw the CIE chromaticity diagram and mention its significance.	[L1][CO3]	[6M]
8	a)	Define the following terms: Radiance, Luminance and Brightness.	[L1][CO3]	[6M]
	b)	Give the importance of the Color Models and explain the RGB models.	[L2][CO3]	[6M]
9	a)	Write brief notes on CMY and CMYK color models.	[L1][CO3]	[6M]
	b)	Explain the method of converting colors from RGB to HSI.	[L2][CO3]	[6M]
10	a)	Illustrate the method of converting colors from HSI to RGB.	[L2][CO3]	[6M]
	b)	Draw the functional block diagram of pseudo colour processing and	[L1][CO3]	[6M]
		explain each block.		

UNIT- IV IMAGE RESTORATION & IMAGE SEGMENTATION

1	a)	Draw the degradation/restoration model in image processing and	[L1][CO4]	[6M]
	ŕ	describe the each part presented on it.		
	b)	Differentiate the Image Enhancement and Image Restoration.	[L4][CO4]	[6M]
2	a)	Explain the Gaussian and Rayleigh noises with their PDF expressions.	[L2][CO4]	[6M]
	b)	Explain the Erlang and Exponential noises with their PDF	[L2][CO4]	[6M]
		expressions.		
	a)	Explain the Uniform and Impulse noises with their PDF expressions.	[L1][CO4]	[6M]
3	b)	Explain the Normal and Gamma noises with their PDF expressions.	[L2][CO4]	[6M]
4	a)	Explain restoration in the presence of noise only using arithmetic and	[L2][CO4]	[6M]
		geometric mean filters.		
	b)	Write the expression for Harmonic and contraharmonic mean filter	[L1][CO4]	[6M]
		and with their importance.		
5	a)	Explain the method of inverse filtering for image restoration.	[L2][CO4]	[6M]
	b)	Give the advantages and disadvantages of the inverse filtering.	[L2][CO4]	[6M]
6	a)	Explain the method of the Least mean square filters for image	[L2][CO4]	[6M]
		restoration.		
	b)	Discuss the method of constrained least square restoration for image	[L2][CO4]	[6M]
		restoration.		
7	a)	Give the importance of image segmentation in image processing.	[L2][CO5]	[6M]
	b)	Explain the Region based Approach for image segmentation.	[L2][CO5]	[6M]
8	a)	Illustrate the Clustering techniques for image segmentation with	[L2][CO5]	[6M]
		example.		
	b)	Discuss the basics of the intensity thresholding.	[L2][CO5]	[6M]
9	a)	List out the different types of thresholding.	[L1][CO5]	[6M]
	b)	Discuss the Edge detection with the help of the following operators:	[L2][CO5]	[6M]
		i) Gradient ii) Roberts iii) Prewitt iv) Sobel.		
10	a)	Discuss the Laplacian operator in edge detection. Also mention its	[L2][CO5]	[6M]
		drawbacks.		
	b)	Discuss the concept of Laplacian of Gaussian (LoG) operator for edge	[L2][CO5]	[6M]
		detection.		

UNIT- V IMAGE COMPRESSION

		D. C. 1 C.11 1	FT 435 G G 43	5 63 53
	a)	Define the following terms :	[L1][CO6]	[6M]
		Data, Information, Data Redundancy, Data compression and		
		Compression Ratio.		
	b)	Explain the Coding Redundancy with suitable example.	[L2][CO6]	[6M]
1	a)	Explain the Spatial and Temporal Redundancy with suitable example.	[L2][CO6]	[6M]
1	b)	Compute the average length, compression and coding redundancy if	[L4][CO6]	[6M]
	U)		[L4][CO0]	[UIVI]
		the computer-generated image has the intensity distribution shown in		
		table. If a natural 8-bit code is used to represent its 4 possible		
		intensities.		
		Intensities r _k Probabilities p _k		
		$r_{87}=87$ 0.25		
		$r_{128}=128$ 0.47		
		$r_{186}=186$ 0.25		
		r ₂₅₆ =256 0.03		
		$r_k \text{ for } k \neq 87,128,186,256$ 0		
2	a)	Define Entropy and irrelevant information.	[L2][CO6]	[6M]
	b)	Consider an image strip of size 50×100 . The image consists of five	[L4][CO6]	[6M]
		vertical stripes. The gray levels of the stripes are 128, 64, 32, 16 and		
		8. The corresponding widths of the stripes are 35, 30, 20, 10 and 5		
		pixels respectively. If this stripe image coded is by Huffman coding,		
		determine its efficiency.	FT 435 GO 43	5 (3.53
3	a)	Discuss the Objective fidelity criteria and subjective fidelity criteria	[L2][CO6]	[6M]
		with suitable example.		
	b)	Compare zero-memory source and Markov or finite memory source.	[L2][CO6]	[6M]
4	a)	Differentiate lossy compression process and lossless compression	[L2][CO6]	[6M]
		process.		
	b)	Explain the functional block diagram of a general image compression	[L2][CO6]	[6M]
		system with neat sketch.	[22][000]	[01,1]
5	a)	Explain the procedure for Huffman coding for image compression	[L2][CO6]	[6M]
3	(a)	method.	[L2][CO0]	[UIVI]
	1 \		H 411000	F (2) (7)
	b)	Justify Huffman coding is a uniquely decodable coding.	[L4][CO6]	[6M]
6	a)	For the image shown below, compute the degree of compression that	[L3][CO6]	[6M]
		can be achieved using Huffman coding of pixel values. Assume 2 bits		
		to represent the pixel value.		
		[3 3 3 2]		
		2 3 3 3		
		3 2 2 2		
		$\begin{bmatrix} 2 & 2 & 2 \\ 2 & 1 & 1 & 0 \end{bmatrix}$		
	b)	Why Huffman coding is called as block code.	[L4][CO6]	[6M]
7	a)	Explain the procedure for Arithmetic coding with suitable example.	[L4][CO6]	[6M]
'				
0	<u>b)</u>	Summarize the procedure of Bit plane coding with suitable example.	[L2][CO6]	[6M]
8	a)	Explain the Run length coding with proper example.	[L2][CO6]	[6M]
	b)	Explain the functional block diagram of a transform coding technique.	[L2][CO6]	[6M]
9	a)	Compare the adaptive transform coding and non- adaptive transform	[L2][CO6]	[6M]
		coding.		
	b)	Discuss the different Image Formats and compression standards.	[L2][CO6]	[6M]
	<i>- '</i>		[][[~-,-]