Subject with Code: DIGITAL IMAGE PROCESSING (20EC0441)
Course \& Branch: B.Tech. - ECE Year \& Sem: IV-B.Tech.\& I-Sem. Regulation: R20

UNIT - I

INTRODUCTION TO DIGITAL IMAGE PROCESSING

1	a)	State the purpose of the image processing. List out the fundamental steps in digital image processing which can be applied to images.	[L1][CO1]	[6M]
	b)	Define image processing. Illustrate example fields of its usage.	[L2][CO1]	[6M]
2	a)	Discuss the three principal sensor arrangements used to transform illumination energy into digital images.	[L2][CO1]	[6M]
	b)	List out the applications of digital image processing.	[L1][CO1]	[6M]
3	a)	Discuss the method of image sensing and acquisition along with suitable diagrams.	[L2][CO1]	[6M]
	b)	Calculate the number of bits required to store a digitized image if image sizes are $8 \times 8,32 \times 32$ for 8 -bit pixel depth.	[L3][CO1]	[6M]
4	a)	Explain about image sampling and quantization process with proper steps.	[L2][CO1]	[8M]
	b)	Discuss the method for representation of a digital image.	[L2][CO1]	[4M]
5	a)	Discuss the classification of digital images and image types.	[L2][CO1]	[6M]
	b)	Explain the neighbors of a pixel with suitable example.	[L3][CO1]	[6M]
6	a)	Illustrate about the adjacency, connectivity, regions and boundaries	[L2][CO1]	[6M]
	b)	Let $\mathrm{V}=\{1\}$, Compute the 4 -adjacency, 8 -adjacency and different paths between two pixels $(1,1)$ and $(3,3)$ for the center pixel in the given image. $A=\left[\begin{array}{lll} 1 & 4 & 7 \\ 2 & 1 & 1 \\ 3 & 1 & 9 \end{array}\right]$	[L3][CO1]	[6M]
7	a)	Discuss about the distance measures of a pixel with suitable example.	[L2][CO1]	[6M]
	b)	Demonstrate the Arithmetic operations on digital images with relevant expressions.	[L2][CO1]	[6M]
8	a)	List out the applications of image subtraction and image multiplication.	[L2][CO1]	[6M]
	b)	Explain the Linear versus Nonlinear operations on digital images with relevant equations.	[L2][CO1]	[6M]
9	a)	Compute the array product and matrix product for the following two images and comment the result. $A=\left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right] \text { and } B=\left[\begin{array}{cc} 2 & -2 \\ -2 & 2 \end{array}\right]$	[L3][CO1]	[6M]
	b)	Explain the Array versus Matrix operations on digital images with relevant equations.	[L3][CO1]	[6M]
10	a)	Demonstrate the set operation and logical operations in digital image processing along with suitable example.	[L2][CO1]	[6M]

| b) | Compute the image addition, image subtraction
 multiplication operation for the following images. | image | [L3][CO1] | [6M] |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x, y)=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $g(x, y)=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$ | | | | |

UNIT- II

IMAGE TRANSFORMS

1	a)	Discuss the need of image transforms.	[L2][CO2]	[6M]
	b)	Define 2D Orthogonal and Unitary transforms.	[L1][CO2]	[6M]
2	a)	Discuss the properties of Unitary transforms.	[L2][CO2]	[6M]
	b)	Define 1D and 2D - Discrete Fourier Transform with equations.	[L1][CO2]	[6M]
3	a)	Prove the Separable property of 2D - Discrete Fourier Transform.	[L3][CO2]	[6M]
	b)	Prove the Periodicity property of 2D - Discrete Fourier Transform.	[L3][CO2]	[6M]
4	a)	Deduce the basis function of 2D - Discrete Fourier Transform for $\mathrm{N}=4$.	[L4][CO2]	[6M]
	b)	Compute 2D - Discrete Fourier Transform for the following image. $f(x, y)=\left[\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right]$	[L3][CO2]	[6M]
5	a)	Define 2D - Discrete Cosine Transform with equations.	[L1][CO2]	[4M]
	b)	Deduce the Discrete Cosine Transform basis matrix for $\mathrm{N}=4$.	[L4][CO2]	[8M]
6	a)	List the applications of 2D-Discrete Cosine Transforms.	[L1][CO2]	[4M]
	b)	Compute 2D - Discrete Cosine Transform for the following image. $f(x, y)=\left[\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right]$	[L3][CO2]	[8M]
7	a)	Compute the image basis function of Hadamard Transform when $\mathrm{N}=2$.	[L3][CO2]	[6M]
	b)	Evaluate Hadamard transform for the given image $f(x, y)=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]$	[L3][CO2]	[6M]
8	a)	Deduce the basis matrix of Walsh Transform for $\mathrm{N}=4$.	[L4][CO2]	[6M]
	b)	Calculate Walsh transform for the given image $f(x, y)=\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right]$	[L3][CO2]	[6M]
9	a)	Define Haar transform and give the algorithm and flowchart to compute Haar basis.	[L1][CO2]	[6M]
	b)	Compute Haar transform for the given image. $f(x, y)=\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right]$	[L3][CO2]	[6M]
1	a)	Compute the Haar basis for $\mathrm{N}=2$.	[L3][CO2]	[8M]
	b)	Compare different Image Transforms.	[L2][CO2]	[4M]

UNIT- III
 IMAGE ENHANCEMENT

1	a)	Define image enhancement and point operations in image enhancement?	[L1][CO3]	[6M]
	b)	Illustrate the contrast stretching in image enhancement with suitable example.	[L2][CO3]	[6M]
2	a)	Define negative image transformation and illustrate with suitable example.	[L1][CO3]	[6M]
	b)	Explain the Intensity level slicing operation and bit extraction operation in image enhancement with suitable example.	[L2][CO3]	[6M]
3	a)	Define histogram and draw the histogram four basic image types.	[L1][CO3]	[6M]
	b)	Explain the procedure for histogram process and uses of histogram.	[L2][CO3]	[6M]
4	a)	Discuss the mechanics of spatial filtering with suitable diagram.	[L2][CO3]	[6M]
	b)	Illustrate the smoothing spatial filters along with the required expressions.	[L2][CO3]	[6M]
5	a)	Illustrate the sharpening spatial filters along with the required expressions.	[L2][CO3]	[6M]
	b)	Define the image enhancement in frequency domain and give the expression.	[L1][CO3]	[6M]
6	a)	Discuss the smoothing filters in frequency domain along with the required expressions.	[L2][CO3]	[6M]
	b)	Explain the sharpening filters in frequency domain along with the required expressions.	[L2][CO3]	[6M]
7	a)	Define the following terms: Saturation, Hue and Brightness.	[L1][CO3]	[6M]
	b)	Draw the CIE chromaticity diagram and mention its significance.	[L1][CO3]	[6M]
8	a)	Define the following terms: Radiance, Luminance and Brightness.	[L1][CO3]	[6M]
	b)	Give the importance of the Color Models and explain the RGB models.	[L2][CO3]	[6M]
9	a)	Write brief notes on CMY and CMYK color models.	[L1][CO3]	[6M]
	b)	Explain the method of converting colors from RGB to HSI.	[L2][CO3]	[6M]
10	a)	Illustrate the method of converting colors from HSI to RGB.	[L2][CO3]	[6M]
	b)	Draw the functional block diagram of pseudo colour processing and explain each block.	[L1][CO3]	[6M]

UNIT- IV
IMAGE RESTORATION \& IMAGE SEGMENTATION

1	a)	Draw the degradation/restoration model in image processing and describe the each part presented on it.	[L1][CO4]	[6M]
	b)	Differentiate the Image Enhancement and Image Restoration.	[L4][CO4]	[6M]
2	a)	Explain the Gaussian and Rayleigh noises with their PDF expressions.	[L2][CO4]	[6M]
	b)	Explain the Erlang and Exponential noises with their PDF expressions.	[L2][CO4]	[6M]
3	a)	Explain the Uniform and Impulse noises with their PDF expressions.	[L1][CO4]	[6M]
	b)	Explain the Normal and Gamma noises with their PDF expressions.	[L2][CO4]	[6M]
4	a)	Explain restoration in the presence of noise only using arithmetic and geometric mean filters.	[L2][CO4]	[6M]
	b)	Write the expression for Harmonic and contraharmonic mean filter and with their importance.	[L1][CO4]	[6M]
5	a)	Explain the method of inverse filtering for image restoration.	[L2][CO4]	[6M]
	b)	Give the advantages and disadvantages of the inverse filtering.	[L2][CO4]	[6M]
6	a)	Explain the method of the Least mean square filters for image restoration.	[L2][CO4]	[6M]
	b)	Discuss the method of constrained least square restoration for image restoration.	[L2][CO4]	[6M]
7	a)	Give the importance of image segmentation in image processing.	[L2][CO5]	[6M]
	b)	Explain the Region based Approach for image segmentation.	[L2][CO5]	[6M]
8	a)	Illustrate the Clustering techniques for image segmentation with example.	[L2][CO5]	[6M]
	b)	Discuss the basics of the intensity thresholding.	[L2][CO5]	[6M]
9	a)	List out the different types of thresholding.	[L1][CO5]	[6M]
	b)	Discuss the Edge detection with the help of the following operators: i) Gradient ii) Roberts iii) Prewitt iv) Sobel.	[L2][CO5]	[6M]
10	a)	Discuss the Laplacian operator in edge detection. Also mention its drawbacks.	[L2][CO5]	[6M]
	b)	Discuss the concept of Laplacian of Gaussian (LoG) operator for edge detection.	[L2][CO5]	[6M]

IMAGE COMPRESSION

	a)	Define the following terms : Data, Information, Data Redundancy, Data compression and Compression Ratio.		[L1][CO6]	[6M]
	b)	Explain the Coding Redundancy with suitable example.		[L2][CO6]	[6M]
1	a)	Explain the Spatial and Temporal Redundancy with suitable example.		[L2][CO6]	[6M]
	b)	Compute the average length, compression and coding redundancy if the computer-generated image has the intensity distribution shown in table. If a natural 8 -bit code is used to represent its 4 possible intensities.		[L4][CO6]	[6M]
2	a)	Define Entropy and irrelevant information.		[L2][CO6]	6M
	b)	Consider an image strip of size 50×100. The image consists of five vertical stripes. The gray levels of the stripes are $128,64,32,16$ and 8. The corresponding widths of the stripes are $35,30,20,10$ and 5 pixels respectively. If this stripe image coded is by Huffman coding, determine its efficiency.		[L4][CO6]	[6M]
3	a)	Discuss the Objective fidelity criteria and subjective fidelity criteria with suitable example.		[L2][CO6]	[6M]
	b)	Compare zero-memory source and Markov or finite memory source.		[L2][CO6]	[6M]
4	a)	Differentiate lossy compression process and lossless compression process.		[L2][CO6]	[6M]
	b)	Explain the functional block diagram of a general image compression system with neat sketch.		[L2][CO6]	[6M]
5	a)	Explain the procedure for Huffman coding for image compression method.		[L2][CO6]	[6M]
	b)	Justify Huffman coding is a uniquely decodable coding.		[L4][CO6]	[6M]
6	a)	For the image shown below, compute the degree of compression that can be achieved using Huffman coding of pixel values. Assume 2 bits to represent the pixel value.$\left\|\begin{array}{llll} 3 & 3 & 3 & 2 \\ 2 & 3 & 3 & 3 \\ 3 & 2 & 2 & 2 \\ 2 & 1 & 1 & 0 \end{array}\right\|$		[L3][CO6]	[6M]
	b)	Why Huffman coding is called as block code.		[L4][CO6]	[6M]
7	a)	Explain the procedure for Arithmetic coding with suitable example.		[L2][CO6]	[6M]
	b)	Summarize the procedure of Bit plane coding with suitable example.		[L2][CO6]	[6M]
8	a)	Explain the Run length coding with proper example.		[L2][CO6]	[6M]
	b)	Explain the functional block diagram of a transform coding technique.		[L2][CO6]	[6M]
9	a)	Compare the adaptive transform coding and non- adaptive transform coding.		[L2][CO6]	[6M]
	b)	Discuss the different Image Formats and compression standards.		[L2][CO6]	[6M]

